Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel.
نویسندگان
چکیده
Borneol, a natural product isolated from several species of Artemisia, Blumea and Kaempferia, has a widespread use in traditional medicine. TRP ion channels are a class of nonselective cation channel proteins involved in a variety of physiological and pathological processes in mammals. TRPA1, a member of TRP family of cation channels, is involved in plethora of processes including noxious-cold, noxious-pain sensations, inflammation and the detection of irritant chemicals. Borneol is chemically related to camphor (a known inhibitor of TRPA1 ion channels); therefore, it is beneficial to investigate the effects of borneol on TRPA1. In the present investigation it was found that borneol inhibits TRPA1 mediated cationic currents in low millimolar range (IC50 0.3mM) in heterologous expression systems like Xenopus oocytes and in neurons cultured from trigeminal ganglia. Effects of nicotine, a known chemical irritant and agonist of TRPA1 are also inhibited by borneol in both systems. It is concluded that borneol, being an inhibitor of TRPA1, could be a safer therapeutic-combination in clinical situations where TRPA1 channelopathies like neuropathic-pain, trigeminal neuralgia or nicotine withdrawal treatments are involved.
منابع مشابه
High-Threshold Mechanosensitive Ion Channels Blocked by a Novel Conopeptide Mediate Pressure-Evoked Pain
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of se...
متن کاملGeneral anesthetics activate a nociceptive ion channel to enhance pain and inflammation.
General anesthetics (GAs) have transformed surgery through their actions to depress the central nervous system and blunt the perception of surgical insults. Counterintuitively, many of these agents activate peripheral nociceptive neurons. However, the underlying mechanisms and significance of these effects have not been explored. Here, we show that clinical concentrations of noxious i.v. and in...
متن کاملDrosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons.
Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)beta and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation ch...
متن کاملNoxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxiou...
متن کاملThe role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies
TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pakistan journal of pharmaceutical sciences
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2015